Analyse-synthèse

Exercice 804. Déterminer tous les réels $x$ tels que $\sqrt{x^2}-2x=3$.
Exercice 805. Résoudre l'équation $9n^5-12n^4+6n-5=0$ d'inconnue $n \in \Z$.
Exercice 806. Déterminer toutes les fonctions affines $f$ telles que pour tout $x \in \R$, $f(f(x))=x$.
Exercice 807. Déterminer toutes les fonctions $f$ définies sur $\R$ telles que \[\forall x \in \R, \;\;f(x)+xf(1-x)=1+x \]
Exercice 808. Déterminer toutes les fonctions $f$ définies sur $\R$ telles que \[ \forall x,y \in \R, \;\; f(y-f(x))=2-x-y \]
Exercice 809. Déterminer toutes les fonctions $f$ définies sur $\R$ et à valeurs réelles, telles que \[ \forall x,y \;\; f(x+y)=f(y)+x \]
Exercice 810. Déterminer les fonctions $f$ définies sur $\R$ telles que \[ \forall x,y \in \R,\;\; f(x)f(y)-f(xy)=x+y\]
Exercice 811. Déterminer les fonctions $f$ dérivables sur $\R$ a valeurs dans $\R$ telles que \[ \forall x,y \;\; f(x+y)=f(x)+f(y) \]
Exercice 812. Montrer que toute fonction $f : \R \to \R$ s'écrit de manière unique comme somme d'une fonction paire et d'une fonction impaire.