Comparaison série-intégrale

Exercice 1980. À l’aide d’une comparaison avec une intégrale, donner la nature de la série\\ \[ \Sum_{n\geqslant 2}\Frac{1}{n\ln n}. \]
Exercice 1981. En exploitant une comparaison avec des intégrales, établir :\\
  1. $\Sum_{k=1}^{n}\sqrt{k}\sim \Frac{2}{3}n\sqrt{n}$.\\
  2. $\ln(n!)\sim n\ln n$.\\
  3. $\Sum_{k=2}^{n}\Frac{1}{k\ln k}\sim \ln(\ln n)$.
Exercice 1982. En exploitant une comparaison série-intégrale, déterminer\\ \[ \lim_{a\to+\infty}\Sum_{n=1}^{+\infty}\Frac{a}{n^2+a^2}. \]
Exercice 1983. Soit $a > 0$, $b > 0$ et pour $n \in \N^*$,\\ \[ A_n=\Frac{1}{n}\Sum_{k=1}^{n}(a+bk), \qquad B_n=\Prod_{k=1}^{n}(a+bk)^{1/n}. \] Trouver $\limn \Frac{B_n}{A_n}$ en fonction de $e$.\\
Exercice 1984. On note $a_n$ le nombre de chiffres dans l'écriture décimale de l'entier $n \geqslant 1$.\\ Pour quelles valeurs de $x \in \R$ y a-t-il convergence de la série\\ \[ \Sum_{n=1}^{+\infty}\Frac{x^{a_n}}{n^3}\; ? \]
Exercice 1985. Étudier en fonction de $\alpha \in \R$ la nature de\\ \[ \Sum_{n \geqslant 2}\Frac{1}{n^{\alpha}\ln n}. \]
Exercice 1986. Déterminer la nature de la série de terme général\\ \[ u_n=\Frac{1}{n(\ln n)^{\alpha}}. \]
Exercice 1987. Soit $\alpha \in \R^{*}$.\\ On pose, pour $n \in \N^{*}$,\\ \[ u_n=\Frac{1}{\Sum_{k=1}^{n}k^{\alpha}}. \] Déterminer la nature de la série de terme général $u_n$.
Exercice 1988. Soit $\alpha < 1$.\\ Déterminer un équivalent de $\Sum_{k=1}^{n}\Frac{1}{k^{\alpha}}$.
Exercice 1989. Soit $(u_n)_{n \in \N}$ une suite de réels strictement positifs.\\ Pour $n \in \N$ on pose $S_n=\Sum_{k=0}^{n}u_k$ et, en cas d’existence, $R_n=\Sum_{k=n}^{+\infty}u_k$.\\
  1. On suppose que $\Sum u_n$ diverge. Prouver que $\Sum \Frac{u_n}{S_n^{\alpha}}$ converge $\Longleftrightarrow$ $\alpha > 1$.\\
  2. On suppose que $\Sum u_n$ converge. Prouver que $\Sum \Frac{u_n}{R_n^{\alpha}}$ converge $\Longleftrightarrow$ $\alpha < 1$.