Approfondissement / Vers la prépa
Exercice
254. Calculer $\displaystyle \lim_{ h \to 0} \Frac{(2+h)^{10}-2^{10}}{h}$.
Exercice
255. Calculer $\displaystyle \lim_{x \to 2} \Frac{x^2-3x+2}{x^2+3x-10}$.
Exercice
256. Déterminer $\displaystyle \lim_{x \to 2} \Frac{x^3-x-6}{x^2-4}$.
Exercice
257. Calculer $\displaystyle \limz \parenthese{\Frac{1}{x}-\sqrt{1+\Frac{1}{x^2}}}$.
Exercice
258. Soit $m$ un réel positif ou nul. Discuter, suivant les valeurs de $m$, l'existence et la valeur de \[ \displaystyle \lim_{x \rightarrow 0} \frac{ \sqrt{x^2 + m} - 1 }{x} \]
Si nécessaire, on distinguera les limites à gauche et à droite.
Exercice
259. Calculer $\limplus 1+\sqrt{x+1}-\sqrt{x}$.
Exercice
260. Calculer les limites suivantes : \\
- $\limz \Frac{ e^{2x+1}-e}{e^{3x}-1}$. \\
- $\limz \Frac{ e^{ax}-e^{bx}}{x}$, avec $a \neq b$. \\
- $\limplus x\parenthese{ e^{\frac{1}{x}} - e^{ \frac{1}{x+1}}}$.
Exercice
261. Soit $f(x)= e^{\cos{\sqrt{x}}}$. \\
Calculer $\limz f(x)$ et $\limz f'(x)$.
Exercice 262. Asymptote oblique
\\- Etudier la fonction $f$ définie sur $[1,+\infty[$ par $f(x) = \ln(1+e^x)$. \\
- Montrer que $f(x) - x \: \underset{x \to +\infty}{\longrightarrow} 0$. Interpréter géométriquement.
Exercice
263. \\
Soit $f$ définie sur $\R$ par $f(x) = \ln(e^x+2e^{-x})$. \\
- Calculer $\limplus f(x)$ puis montrer que $y=x$ est asymptote à $\Cf$ en $+\infty$. \\
- Calculer $\limoins f(x)$ puis montrer que $y=-x+\ln{2}$ est asymptote à $\Cf$ en $-\infty$. \\
- Montrer que $f$ admet un minimum égal à $\Frac{3}{2}\ln{2}$.
Exercice
264. \\
Soit $f$ la fonction définie par $f(x) = \ln(e^{2x}-3e^{x}+2)$. \\
- Après avoir déterminé le domaine de définition de $f$, étudier ses variations. \\
- Montrer que la droite d'équation $y=2x$ est asymptote à la courbe de $f$.
Exercice
265. \\
$\forall a\in \R$, on note $f_a$ la fonction définie sur $\Rpe$ par $f_a(x) = \Frac{x^2-1}{4}-\Frac{a}{2}\ln{x}$. \\
Déterminer, suivant les valeurs de $a$, les limites en $+\infty$ et en $0$ de $f_a$.
Exercice
266. \\
Calculer $\limz \sin{x}^{\sin{x}}$.
Exercice
267. \\
Calculer $\limz x\ln(\sin{x})$.
Exercice
268. \\
Calculer les limites en $0$ et en $+\infty$ de la fonction $f$ définie sur $\Rpe$ par $f(x) = \Frac{\ln(1+\sqrt{x})}{\sqrt{x}}$
Exercice
269. \\
Calculer $\limplus (x^x)^x-x^{2^x}$
Exercice
270. \\
Calculer les deux limites suivantes :
\[
\lim_{x \to 0^+} x^{x^x}
\quad et \quad
\lim_{x \to 0^+} (x^x)^x
\]
Exercice
271. Calculer $\limplus \Frac{2^{(3^x)}}{3^{(2^x)}}$.