Applications, Images directes, réciproques

Exercice 736. Soit $f : \R \to \R$ telle que $f \circ f$ est croissante et $f \circ f \circ f$ est strictement décroissante. \\ Montrer que $f$ est strictement décroissante.
Exercice 737. Soit $f : E \to E$ telle que $f \circ f \circ f = Id_E$. \\ Montrer que $f$ est bijective et déterminer sa bijection réciproque.
Exercice 738. Soit $E$ un ensemble et $f : E \to E$ telle que $f \circ f \circ f = f$. \\
  1. Montrer que si $f$ est injective, alors $f \circ f = Id_{E}$. \\
  2. Montrer que si $f$ est surjective, alors $f \circ f = Id_{E}$.
Exercice 739. Soit $E$ un ensemble et $f:E \to E$ une application telle que $f \circ f \circ f = f$.\\ Montrer que $f$ est injective si et seulement si $f$ est surjective.
Exercice 740. Soit $E$ et $F$ deux ensembles. Soit $f : E \to F$ et $g : F \to E$ deux applications. \\ On suppose que $f \circ g$ et $g \circ f$ sont bijectives. \\ Montrer que $f$ et $g$ sont bijectives.
Exercice 741. Soient $E$, $F$ et $G$ trois ensembles, et $f : E \to F$ et $g : F \to G$ deux applications. Montrer que : \\
  1. Si $f$ et $g$ sont injectives, alors $g \circ f$ est injective. \\
  2. Si $f$ et $g$ sont surjectives, alors $g \circ f$ est surjective. \\
  3. Si $g \circ f$ est injective, alors $f$ est injective (mais pas $g$ forcément). \\
  4. Si $g \circ f$ est surjective, alors $g$ est surjective (mais pas $f$ forcément).
Exercice 742. Soient $f : E \to F$, $g : F \to G$ et $h : G \to E$. \\ Montrer que si $h \circ g \circ f$ est injective et $g \circ f \circ h$ et $f \circ h \circ g$ sont surjectives, alors $f$, $g$ et $h$ sont bijecties.
Exercice 743. Soient $f : E \to F$ et $g : F \to E$ telles que $f \circ g \circ f$ est bijective. Montrer que $f$ et $g$ sont bijectives.
Exercice 744. \\ Soient $f : E \to F$ et $g : F \to G$. \\
  1. Montrer que si $g \circ f$ est injective et $f$ surjective, alors $g$ est injective. \\
  2. Montrer que si $g \circ f$ est surjective et $g$ injective, alors $f$ est surjective.
Exercice 745. Soit $f:E \to F$, montrer que $f$ est surjective si et seulement si pour tout ensemble $G$ et toute fonction $h,g:F \to G$, \[ g \circ f = h \circ f \implies g = h. \] \\ Indication : Pour le sens réciproque on pourra considérer $G=\{0,1\}$.
Exercice 746. Soit $f : E\to E$ telle qu'il existe un entier $n \geqslant 2$ tel que $f^{n} = f$. \[ f^{n} = \underbrace{f \circ f \circ \hdots \circ f}_{ n \; fois} \] Montrer que $f$ est injective $\iff$ $f$ est surjective.
Exercice 747. Soit $f : E \to F$. \\ Montrer que $f$ surjective $\iff$ $f(E)=F$.

Exercice 748. Images directes, réciproques

\\ Soit $A$ et $B$ des parties de $E$ et $f$ une application de $E$ dans $F$. \\
  1. Montrer que $f(A \cup B) = f(A) \cup f(B)$. \\
  2. Montrer que $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

Exercice 749. Image directe et injectivité

\\ Soit $f : E \to F$. Montrer que les conditions suivantes sont équivalents : \\
  1. $f$ est injective. \\
  2. Pour toutes parties $A$, $B$ $\in \mathcal{P}(E)$, on a $f(A\cap B) = f(A) \cap f(B)$.

Exercice 750. Images réciproques

\\ Soient $E$ et $F$ deux ensembles et $f : E \to F$ une application. \\
  1. Montrer que pour tout $A,B \in \mathcal{P}(F)$, $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$. \\
  2. Pour tout $A \in \mathcal{P}(E)$, $f^{-1}(F \backslash A) = E \backslash f^{-1}(A)$.
Exercice 751. Soient $E$ et $F$ deux ensembles et $f$ une application de $E$ dans $F$. Montrer que les assertions suivantes sont équivalentes :
  1. $f$ est surjective\\
  2. $\forall y \in F,\; f(f^{-1}(\{y\})) = \{y\}$\\
  3. $\forall Y \in \mathcal{P}(F),\; f(f^{-1}(Y)) = Y$\\
  4. $\forall Y \in \mathcal{P}(F),\; f^{-1}(Y) = \varnothing \iff Y = \varnothing$\\
Donner un énoncé analogue en remplaçant la première propriété par $f$ est injective.

Exercice 752. Images directes, réciproques

\\ Soit $f$ une application de $E$ dans $F$. \\
  1. Montrer que $\forall A \subset E$, $A \subset f^{-1}(f(A))$. \\
  2. Montrer que $\forall B \subset F$, $f(f^{-1}(B)) \subset B$. \\
  3. Montrer que $f$ est injective $\iff$ $\forall A \subset E$, $A = f^{-1}(f(A))$. \\
  4. Montrer que $f$ est surjective $\iff$ $\forall B \subset F$, $f(f^{-1}(B)) = B$.
Exercice 753. Soit \[ \begin{array}{rcl} f : \mathcal{P}(E) &\to& \mathcal{P}(A)\times\mathcal{P}(B) \\ X &\mapsto& (X\cap A,\; X\cap B) \end{array} \]
  1. Montrer que $f$ est injective $\iff$ $A \cup B = E$. \\
  2. Montrer que $f$ est surjective $\iff$ $A \cap B = \varnothing$. \\
  3. Donner une condition nécessaire et suffisante pour que $f$ soit bijective. \\ Déterminer alors son application réciproque $f^{-1}$.
Exercice 754. Soit $E$, $F$, $G$ et $H$ quatre ensembles.\\ Soit $s : E \to F$, $f : E \to G$, $i : G \to H$ et $g : F \to H$ des applications telles que $s$ est surjective, $i$ est injective et $i \circ f = g \circ s$.\\ Montrer qu’il existe une unique application $h : F \to G$ telle que $f = h \circ s$ et $g = i \circ h$.
Exercice 755. Soit $E,E',F,F'$ quatre ensembles, $u : E' \to E$ et $v : F \to F'$ deux applications.\\ On pose $\Phi : F^{E} \to F'^{E'}$ par $f \mapsto v \circ f \circ u$.\\
  1. Montrer que si $u$ est surjective et $v$ injective, alors $\Phi$ est injective.\\
  2. Montrer que si $u$ est injective et $v$ surjective, alors $\Phi$ est surjective.\\
  3. Étudier les réciproques.